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Introduction

We consider the Neumann problem

−�u = f in Ω
∂u
∂n = 0 on Γ

where Ω ⊂ RIN is a bounded open region with boundary Γ.
Solutions are not unique—they are determined up to a constant
value. The constraint on the source f is the zero mean condition

∫
Ω

f(x) = 0.

Equivalently, f is L2 orthogonal to 1.
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Standard Approach 1

A direct Galerkin discretization leads to a singular linear system

Au = f .

Although A is singular, the conjugate gradient method can be used
(see Axelsson 1994).

Notation:

Ai,j = B(φh
j , φ

h
i ) =

∫
Ω

∇φh
i · ∇φh

j

for i, j = 1, . . . , N . We denote the discrete source term f by

fi = F (φh
i ) =

∫
Ω

fφh
i

and the basis mean vector zi = (φh
i , 1) =

∫
Ω
φh.
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Experiment using conjugate gradients

Set u = cos(πx2)cos(2πy), Ω be the unit square, and triangulate Ω
via an unstructured mesh.

We used P1 elements on triangles, 3 point quadrature. (Number of
nodes = 427, number of elements = 779, max element area h2/2).

CG tolerance = 1 · 10−4 & Preconditioner = Jacobi.

Divergence is confirmed after computing L2(Ω) and H1(Ω)
semi-norm errors of the approximate solution (8 · 107 and 3 · 101).

Situation is worse with P2 elements.

What happened ?
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Discrete source is not numerically orthogonal to the
nullspace

To restore the discrete consistency of the system of the linear
system, we need to orthogonalize f against c:

(I− zc
T

zT c
)f

where the above is formally equivalent to∫
Ω

(f −
∫
Ω
fdΩ∫

Ω
dΩ
)φi dΩ

in the i-th row.

We should also worry about

−∇ · d(x)∇u = f

because the resulting stiffness matrix may not be singular.
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Standard Approach 2

To remove the nullspace of A, the discrete solution is specified at
some nodal point and hence a degree of freedom from the linear
system is removed. The system now solved is

(IT	 AI	)û = I
T
	 f

where u = I	û and

I	 = diag(1, · · · , 1, 0, 1, · · · , 1).

The choice of nodal point can make a dramatic difference in the
condition number of the resulting stiffness matrix.

What point ? Two illustrations in the next couple of vu-graphs.

6



Specifying the nodal point in 1D
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Condition number as a function of the specified node location for
31 points on a uniform grid in 1D using PW linears.
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Specifying the nodal point in 2D

Condition number as a function of the specified node for an
unstructured mesh for the unit square using P1 elements.
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Motivation and Goal

• Develop a variational framework for the Neumann problem.

• Comparison of different classes of methods.

• Propose a novel penalized variational approach.

• Blend of algebraic and fem techniques.
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Starting point is the quadratic functional

min J(v, f) =
1
2

∫
Ω

|∇v|2dx−
∫

Ω

fvdx

Discuss the space for the minimization and how to incorporate the
constraint on the source. Three approaches are

• Lagrange multipliers

• penalization

• a subspace of H1(Ω) functions that satisfy (u, ω) =
∫
Ω
uω = 0
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Unconstrained minimization on H1(Ω)/RI

min
û∈H1(Ω)/RI

J(v, f) =
1
2

∫
Ω

|∇v|2dx−
∫

Ω

fvdx

H1(Ω)/RI contains classes of functions û that differ by a constant.
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Constrained minimization on H1(Ω)

Let ω ∈ H−1(Ω) satisfy (ω, 1) > 0 and for any u ∈ H1(Ω) we define
the ω-mean as

uω ≡ (u, ω)
(1, ω)

=
∫

uω∫
ω

.

Consider the problem

min
u∈H1(Ω)

J(u, f) subject to uω = 0.

Note that ω = 1 implies that uω is the mean value of u.
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A subspace of H1(Ω)—a reduced problem

Consider the space

H1
ω(Ω) = {u ∈ H1(Ω) |uω = 0}

of all functions with zero ω-mean, and the reduced problem

min
u∈H1

ω(Ω)
J(u, f).

Unique minimizer u ∈ H1
ω(Ω) for every f ∈ L2(Ω).

Need FE spaces that approximate H1
ω(Ω).
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Constrain J(u, f)—use Lagrange multipliers

min
u∈H1(Ω)

τ∈RI

J(u, f) + τuω

(Braess 1997) and the resulting optimality system: determine
u ∈ H1(Ω) and τ ∈ RI so that

B(u, v) + τvω = F (v) ∀v ∈ H1(Ω)

σuω = 0 ∀σ ∈ RI

where vω = (v, ω)/(1, ω).

Unique minimizer u ∈ H1(Ω) for every f ∈ L2(Ω).

Need to solve a saddle point problem.
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Constrain J(u, f)—use penalization

min
u∈H1(Ω)

J(u, f) + ρu2
ω ≡ min

u∈H1(Ω)
Jρ(u, f).

and the associated optimality system: seek u ∈ H1(Ω) such that

Bρ(u, v) = F (v) ∀v ∈ H1(Ω),

where

Bρ(u, v) ≡
∫

Ω

∇u · ∇vdx+
ρ

(1, ω)2

∫
Ω

uωdx

∫
Ω

vωdx.

Unique minimizer u ∈ H1(Ω) for every f ∈ L2(Ω).
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Remarks

Lagrangian and penalty methods can be derived from each other.

For example, the Lagrange multiplier can be eliminated by
perturbing the constraint by −ρ−1(σ, τ) and inserting into the
primal equation thus eliminating the Lagrange multiplier.

Can also use a mixed method so that the natural condition
becomes an essential condition. We’ll not discuss this further.

No longer consider the Lagrange formulation because the resulting
linear system is indefinite (saddle point problem).
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Examples

1. If ω = 1 then H1
ω(Ω) = H1(Ω) ∩ L2

0(Ω). This space has been
used as a setting for the Neumann problem in Brenner & Scott.

2. Recall that in one-dimension H1(Ω) ⊂ C0(Ω) and
δ(x∗) ∈ H−1(Ω). Then, (u, δ(x∗)) = u(x∗) and

H1
ω(Ω) = {u ∈ H1(Ω) |u(x∗) = 0}.

This choice will give rise to a finite element method in which a
solution value is specified at a given triangulation node.
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Theorem

For a given f ∈ L2(Ω) let uR and uP denote solutions of the
reduced and penalized problems, respectively. Then

uP
ω =

1
ρ
(f, 1)

If uR and uP also belong to H2(Ω), both functions solve the
Neumann problem

−�u = f − ω
(f, 1)
(ω, 1)

in Ω and
∂u

∂n
= 0 on Γ

If f ∈ L2
0(Ω) then uP = uR.
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FE approximation

Let P k denote the Lagrangian space of continuous, piecewise
polynomial functions with respect to a triangulation;
P k

ω ≡ P k ∩H1
ω(Ω)

min
uh∈P k/RI

J(uh, f) ≡ min
u∈RI N /c

1
2
uTAu− uT f

min
uh∈P k

Jρ(uh, f) ≡ min
u∈RI N

1
2
uTAu− uT f + ρ

(uTw)2

(cTw)2
.

min
uh∈P k

ω

J(uh, f) ≡ min
u∈RI N−1

1
2
uTAωu− uT fω,
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Acronyms

SFEM Singular A

FFEM Set ω equal to a point measure in P k
ω

RFEM Set ω equal to one in P k
ω

PFEM Penalized formulation.
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SFEM

Need to solve the singular set of equations

Au = f .

Need fT c = εM‖A‖. This can be done via the projection

(I− zc
T

zT c
)f

Also possible to recast Au = f as a least squares problem with
linear equality constraint:

min
Bu=0

‖Au− f‖2.

There are several choices for B including cT , wT and eT
	 . Normal

equations or a QR factorization are needed for a solution.
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FE discretization of the PFEM

Given a nodal basis {φh
j }N

j=1 a linear system of algebraic equations
whose matrix Aρ has entries given by

∫
Ω

∇φh
i · ∇φh

j +
ρ

(1, ω)2

∫
Ω

φh
i ω

∫
Ω

φh
j ω

results. Note that

Aρ = A+ ρ/(1, ω)2wwT

is SPD for a conforming FEM.
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Implementation of PFEM

Given a vector x, then

Aρx = Ax+
ρ

(1, ω)2
wwTx = Ax+

ρ

(1, ω)2
(wTx)w.

Ax is easily computed by

1. forming the vector w = Ax;

2. computing the scalar µ = ρ/(1, ω)2(wTx);

3. updating w + µw.
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Matrix interpretation

Theorem Suppose that A = QΛQT is an eigen-decomposition
where Qe1 = c and Ac = 0. If

w = ‖w‖ cosφc+ r,

where rT c = 0 and φ measures the positive angle between c and w,
then

‖Aρ −Q(Λ+ ρ‖w‖2 cos2 φe1eT
1 )Q

T ‖ ≤ ρ‖w‖2(sin 2φ+ sin2 φ).

Set ρ to at least the smallest non-zero eigenvalue of A but no larger
than ‖A‖.
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Using H1
ω(Ω)—FFEM and RFEM

We construct a nodal basis for Pω
k so that the ω-weighted mean

condition

N∑
i=1

αi(φh
i , ω) = 0

Note that simply subtracting the mean value of φh
i does not work

because the gradient annihilates constants.

Solving this equation for the #-th term gives rise to the set of
functions

ψh
i,	 = φh

i − φh
	

(φh
i , ω)

(φh
	 , ω)

i = 1, . . . , N ; i �= #
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The stiffness matrix Aω

If P	 =
(
I− 1

eT
�
w
e	wT

)
I	 then

Aω = PT
	 AP	

is a matrix of order N − 1. Note that I− 1
eT

�
w
e	wT is a projection

whose Range is orthogonal to the Span(w). Postmultiplication by
I	 restricts the subspace to be orthogonal to Span(e	).

If ω = 1 (RFEM) then w = z and I− 1
eT

�
z
e	zT is not an orthogonal

projection.

If ω is a point measure (FFEM), then I− e	eT
	 is an orthogonal

projection.

26



RFEM in 2D

P1 elements
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Condition number as a function of the basis function φh
	 for an

unstructured and structured mesh for the unit square using P1
elements.
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Eigenvalues of resulting matrices

Computed the four largest and four smallest eigenvalues of A, Aρ,
Aω=1 and Aω=δ on the unit square using P1 on a structured mesh
of triangles.

N λmin(Aρ) λmin(Aω=δ) λmax(Aω=1)

256 3.59D-02 7.78D-03 8.46D+02

1024 9.32D-03 1.61D-03 3.71D+03

4096 2.37D-03 3.41D-04 1.56D+04

16384 5.97D-04 7.39D-05 6.41D+04

65536 1.50D-04 1.63D-05 2.59D+05

262144 3.75D-05 3.65D-06 1.04D+06
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Summary of computing eigenvalues

The smallest non-zero eigenvalue of A, Aρ, Aω=1 are all equal and
converge at a quadratic rate. The smallest eigenvalue of Aω=δ

converges at a better than quadratic rate—log2(4.5).

The largest eigenvalues of A, Aρ, and Aω=δ converge to the value
8. However the largest eigenvalue Aω=1 is roughly the order of the
reciprocal of the smallest eigenvalue.

PFEM produces the matrices with the smallest condition
number–equivalent to the non-zero condition number of A.
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Summary

• Introduced an easy to implement penalized formulation for the
Neumann problem.

• Provided an unifying framework for the Neumann problem.

• Experimental results.

Tech report nearly available.

We next want to consider Stokes problem.

30


